
Appendix1

A Implementation Details2

In the training process of the NeRF [Mildenhall et al., 2021]3

setting, we set rendering resolution to 128 × 128, and batch4

size to 1. We apply our random multi-view render system to5

capture a combined image with four sub-images with rotation6

angle α set to 90◦. We use AdamW optimizer [Kingma and7

Ba, 2014] with learning rate 1×10−2 and 1×10−3 for geom-8

etry and background modeling. The background is replaced9

with random colors with 80% of chance. In the DMTet [Shen10

et al., 2021] setting, most of the parameters stay the same, but11

in the self-boost stage, we increase the resolution to 512×51212

for a better result. The initialization stage of 3D Gaussian13

Splatting [Kerbl et al., 2023] is somehow different from the14

other two methods as they use hash-grid while 3D Gaussian15

Splatting is able to initialize from point cloud representation16

directly. The rendering resolution is also 512× 512.17

We apply the CFG trick and negative prompts following the18

example from MVDream [Shi et al., 2023], further append19

prompt “, 3d asset” or “, multi-view of the 3d asset” to get a20

more consistent result.21

B Simply Combination Ablation Study22

Our BoostDream method does not just simply combine the23

feed-forward approach with the SDS-based method. To fur-24

ther test the benefits of applying our multi-view based strat-25

egy, we also design an ablation study using DreamFusion26

[Poole et al., 2022] with the same initialization stage as our27

method. We use the results from Shap-E [Jun and Nichol,28

2023] in the initialization stage and use the same prompt29

text as input to optimize the NeRF representation with Deep-30

Floyd [StabilityAI, 2023]. The results of the original Dream-31

Fusion, the DreamFusion with initialization stage, and our32

BoostDream-NeRF are shown in Figure 1. We can see in33

the first row even with the proper initialization, DreamFusion34

still suffers from the Janus problem and has coarse results35

compared to our BoostDream results.36

C Control Condition Ablation Study37

We also test our method with different multi-view control38

conditions replacing the normal map. We choose canny edge39

[Canny, 1986] and depth map [Ranftl et al., 2020] as guid-40

ance obtained through the same multi-view render system as41

normal map. The results are shown in the Figure 2. Canny42

edge just contains the edge information of the 3D asset. Intu-43

itively, it is unsuitable as a control condition when generating44

high-quality 3D assets. The results also illustrate this point:45

when using canny edge as the control condition, the 3D asset46

suffers from incomplete generation. Especially in the second47

row, the bear turns out to be unnatural and has strange colors.48

Instead of canny edge using edge information to guide the re-49

finement process, the depth map utilizes depth information,50

leading to complete generation results. However, we find that51

the generated results are less detailed when the control con-52

dition is depth map. This can be explained by the fact that53

minor details information is not prominent in depth map but54

salient in normal map [Zhang et al., 2023]. We can further55

validate this idea with the last column, the generated 3D as- 56

sets are high-quality and with more details when under the 57

guidance of normal map. 58

D Result on Different 3D Representations 59

This section supplements the comparison experiment in Sec- 60

tion 4.3. We implement our BoostDream on other differen- 61

tiable representations, including DMTet [Shen et al., 2021] 62

and 3D Gaussian Splatting [Kerbl et al., 2023]. The re- 63

sults are shown in Figure 3, illustrating the generality of our 64

method in generating high-quality assets using different dif- 65

ferential 3D representations. 66
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Figure 1: Simply Combination Ablation Study. The first column is the input coarse model generated by Shap-E [Jun and Nichol, 2023], while
the next three columns are the results for the original DreamFusion [Poole et al., 2022], the DreamFusion with initialization stage, and our
BoostDream-NeRF, respectively.
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Figure 2: Control Condition Ablation Study. The first column is the input coarse model generated by Shap-E [Jun and Nichol, 2023], while
all other columns are the output of our BoostDream method with different control conditions.





Figure 3: Result on Different 3D Representations.The first column is the input coarse model generated by Shap-E [Jun and Nichol, 2023],
while the next three columns are the results of our BoostDream method implemented with NeRF [Mildenhall et al., 2021], DMTet [Shen et
al., 2021] and 3D Gaussian Splatting [Kerbl et al., 2023], respectively.
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